Laminar premixed flames on a flat burner constitute an instructive example for the
mathematical treatment of combustion processes. As Fig. 3.1 illustrates, the burner
is usually a porous disk, ~10 cm in diameter, through which premixed fuel and air

flow. The gases emerge from the disk and flow into the flame, which appears as a
luminous disk levitating a few mm above the porous disk.

If one assumes that the burner diameter is sufficiently large, effects at the edge of
the burner can be neglected as an approximation. Well within the edges, a flat flame
front is observed. The properties in this flame (e. g., temperature and gas composi-
tion) depend only on the distance from the burner, i. e., only one spatial coordinate

(z) 1s needed for the description. The conservation equations for this flame shall now
be derived.
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Fig. 3.1. Schematic illustration of a laminar premixed flat flame



The following assumptions will be made in order to simplify the treatment intended:

- The ideal gas law can be used (p = ¢-R-T; see Section 1.1).

- External forces (e. g., gravitation) are negligible.

- The system is continuous; the mean free path of the molecules is small compared
to the flame thickness (a good assumption for most combustion problems).

- The pressure is constant (spatial or temporal pressure fluctuations are weak).

- The kinetic energy of the gas flow is negligible compared to other terms in the
energy conservation equation (e. g., shock waves are not considered).

- The reciprocal thermal diffusion effect (Dufour effect) can be neglected (see below).

- Heat flux caused by radiation of gases and particles is negligible (this assumption
is acceptable here when the flame is non-sooting).

- The system is in local thermal equilibrium.

- The flame is stationary, i. e., there are no temporal changes. (Formally, time-de-
pendent equations are solved into stationarity (time-independence) in the follow-
ing chapters for numerical reasons to be discussed.)

As will be seen below, these assumptions lead to reasonable predictions for laminar
flat flames.

For any conserved variable E (z = spatial coordinate, t = time) in a one-dimen-
sional system (see Fig. 3.1), the general relation
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holds, where W denotes the density of the conserved variable (= E/volume; in [E]/
m?), J a flux (more precisely flux density) of the conserved variable (= E/(surface-time);
in [E]/(m?:s) , and Q a source (or sink) of the conserved variable (= E/(volume-time));
in [E]/(m?-s)). (3.1) is a statement that accumulation can be accomplished by influx
(or outflux) and by a source (or sink). It will be shown in the following how the gen-
eral equation (3.1) appears in the specific cases of conservation of mass, species, and
enthalpy.

Conservation of the overall mass m of the mixture: In the conservation of total
mass, the density W in the conservation equation is given by the tofal mass density p
(in kg/m?). The flux J describes the movement of mass and is given as the product of
density and the mean mass velocity (velocity of the center of mass, also called flow
velocity),i.e.,J = pv (in kg/(m?-s)). The source term in the mass conservation equa-
tion is zero, because chemical reactions neither create nor destroy mass (Q = 0).
Substitution into (3.1) leads to
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This equation is also called the continuity equation (here for one-dimensional systems).

Conservation of the mass m; of species i: Here the density W is given by the partial
density p; of species i, which denotes the mass of species i per unit volume (p; = m;/V
= (m;/m)(m/V) = w,;p). The flux J is given by the product of the partial density and the
mass velocity v, of the species i (J = p;v; = w; p v;) and has units of kg/(m?s).

In contrast to the conservation equation for the total mass (see above), this equa-
tion has a source term which describes the formation or consumption of species i in
chemical reactions. This term is given by Q = M, (d¢;/01) e = 1'; » Where M, denotes
the molar mass of species i (in kg/mol), (dc;/ 1) e, the chemical rate of production
of species i in chemical reactions (molar scale, units of mol/(m?-s)), and r, the chemi-
cal rate of production (mass scale, in kg/(m?-s)). Together with (3.1) this leads to
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The mass velocity v; of the species i is composed of the mean mass velocity v of the
center of mass of the mixture and a diffusion velocity V,; (relative to the center of
mass), which is caused by molecular transport due to concentration gradients of the
species i (discussed in Section 3.2 and Chapter 5),

v,=v+V,. (3.4)



Simple transformations (product law for differentiation) of (3.3) lead then to
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where the symbol j; denotes the diffusion flux of species i (in the center of mass system),

Ji = pwV, = pV

i -
Together with (3.2), this equation simplifies to the species mass conservation equation
ow ow;,  Jj;
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Conservation of the enthalpy & of the mixture: In this case, the different terms in
(3.1) are given by

W o= Yph, = Ypwh J/m3
J J
J = Xpuvhi+j, = Xpuowh+j, J/(m?s)
J J
0 = 0 (energy conservation) .

Here h; denotes the specific enthalpy of species j (in J/kg) and j, a heat flux, which
corresponds to the diffusion flux j; introduced above and is caused by transport of
energy due to temperature gradients (see below). The term X p;v;h; describes the
change of enthalpy due to the flow of species (composed of the mean mass velocity
v and the diffusion velocity V). Substitution into Eq. (3.1) using v; = v + V; yields
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Using (3.3) and (3.4) one obtains for the first and fourth summands (7', T,) that
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For the second term (7,) in the equation above, simple transformations lead to
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Summation over all terms using j; = pw;V; yields the relation
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The values for j; and j, (diffusion and heat flux) still have to be specified with respect



to the properties of the mixture (pressure, temperature, composition). The empirical
laws used to describe these relations are discussed in the next section.

Use of the conservation of momentum is not necessary here due to the assumption
of constant pressure (see Chapter 12).

3.2 Heat and Mass Transport

Empirical observations have established that concentration gradients lead to mass
transport called diffusion and temperature gradients lead to heat transport called heat
conduction. These empirical observations were later explained by the theory of irre-
versible thermodynamics (Hirschfelder et al. 1964). For the sake of brevity only the
empirical laws are discussed here.

For the heat flux j , numerous measurements support the empirical law of Fourier
in the form
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dz

where A denotes the heat conductivity of the mixture (in J/(K-m-s)). For the mass flux
J;one obtains an extended form of the law of Fick (which includes the first term only)
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where ¢ denotes the molar concentration in mol/m?; D, (units of m?/s) are multicom-
ponent diffusion coefficients, x; mole fractions, and D, the thermal diffusion coeffi-
cient (in kg/(m-s)) of the species i based on the temperature gradient. Species trans-
port caused by a temperature gradient (thermal diffusion) is also called the Soret ef-
fect. For many practical applications the simplified formula
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is sufficiently accurate for the mass flux j. Here DM denotes the diffusion coeffi-
cient for species i into the mixture of the other species (discussed in Chapter 5). For
binary mixtures and for trace species (w; — 0) this simplified formulation is equiva-
lent to (3.8). This assumption of strong dilution is reasonable if the oxidizer is air,
because nitrogen is in excess in this case.



